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Abstract — There is increased interest among network ad-
ministrators and service providers to estimate quality of grvice
parameters associated with their network operations. Two p-
proaches are currently used for collecting and modeling netork
data: passive monitoring of link-level data or active probing to
obtain path-level measurements. In this paper, we investaje the
estimation of link delay distributions based on active netwrk to-
mography based on information gathered from end-to-end mu
ticast measurements. We derive the maximum likelihood estia-
tor, establish its asymptotic properties, and investigatets finite-
sample performance. Comparisons with a heuristic estimatin
scheme proposed in the literature are also made.

|. INTRODUCTION

Both of these schemes require estimation of network pedooa
parameters from a limited set of link-level or path-levelasere-
ments. Vardi [1] introduced the ternetwork tomographyo describe
this class of estimation problems. His paper consideredstimation
of source-destination traffic intensity along links in awetk based
on measurements of traffic flow on directed links. There hanbe
considerable work in this area recently, covering many etsp the
network tomography problem. In this paper, we focus on etitg
internal link-level parameters (specifically delay distitions) from
multicastprobing schemes (to be described below). Past work on
this problem is reviewed in Section 1.3. For an excellenta:gate
review of the state of network tomography, readers are nedeto
Coates, Hero, Nowak, and Yu [2].

Framework and Notation: Networks can typically be captured by

Background:Modern computer and communications networks hagraphs with nodes representing computers or routers aresadg-

evolved into large and complex systems that are deceracabnd
loosely controlled. As a result, it has become increasidgficult to

monitor and assess their performance and determine qudlggr-
vice. Nevertheless, providers are constantly seeking ¥gagsonitor
their network with regard to characteristics such as trafiiensity,
delay, loss, dropped packets, etc. in order to ensure higlityof

service to users. Additionally, the networks are often eudible to
malicious attacks, for example distributed denial of ses(DDoS)
attacks in which many attacker sites send messages to m\sig
in order to disable it. As an example, consider the receneCed
virus [11] which coopts personal computers as 'zombies’ ases
them to conduct DDoS attacks. There is a critical need fdntiees
to detect and locate these attacks, particularly as thegrbeanore
widespread and powerful.

While it may be fairly simple for a provider to investigateopr
lems within his own domain, detecting and locating problehmet
arise in other portions of the Internet is not nearly as edswpdi-
tional queuing and traffic models are not adequate for caqgtuhe
overall behavior of these complex networks. Currentlyretae two
basic approaches that have been found useful for studyitgzar-
acterizing network performance: active and passive mango Pas-
sive traffic measurement involves capturing packets asdhegent
across links and collecting information about them. Thfsrimation
is usually collected at the link level and used to estimatéa-fevel
characteristics. Active probing, on the other hand, ineslgending
probes across a network and keeping track of informatioi sisc
numbers of packets sent and received and the length of titakes
packets to travel from a root node to the receiver node. Tifigrina-
tion is then used to estimate internal link-level parantefssm the
end-to-end path-level measurements.
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resenting the links between them. The objective is to morihie
network’s activity by relying on measurements obtainedrfi@ lim-
ited number of nodes usually located at the periphery of dteark,
where access is easy. The monitoring scheme reliextive prob-
ing of the network, with packets sent from a source node to a set of
destination nodes where the end-to-end (source-destimatielays
are recorded. The time delays a@ditive across links and consist
of both propagation (latency) delays and router procegsjaguing)
delays along the path. In this paper we focuswuiticasttransmis-
sions: at internal routing nodes where forking occurs (seterl in
Figure 1), each packet igplicatedand sent along each branching
path. So the packet is effectively sent from the root nodsltof the
receiver nodes. The key to multicast transmissions for oktwo-
mography is that it introducedependenciebetween end-to-end de-
lays measured by different receivers, which in turn enablfesences
about network internal links characteristics. We will rettattention
to networks whose topologies can be represented by treesewbhg-
ularity renders the inference problem computationallgtable.

Next, we introduce the necessary definitions and notatiaferR
to Figure 1 throughout for a concrete graphical represiemtatl_et
T = (V,€) denote a tree with node st and link (edge) set.
The nodes will all be denoted by a number and each link will be
named after the node at its terminus. 6% € V denote theoot
node from which all multicast packets originate. [Zetdenote the
set of receiver nodes. The parent of négde V will be denoted by
f(k). Note that all nodes, except the root node, have a parent node
Let the functionf(k) be defined in the following recursive manner:
Fik) = f(f1 (k) with f*(k) = f(k). All nodes inV — R have
a set of child nodes, with the set of children of nddelenoted by
d(k). A nodek is said to be in level. = 1,2,...if f~(k) = 0.
The deepest level of the tree will be denoteddyThe trees that we
study in this paper are assumed tolbideary and symmetric Thus,
all of the nodes except the root node and receiver nodes kaetye
two children, and all nodes iR (receiver nodes) are in levél (level
of the tree).
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Figure 1. An example of a tree topology with some of the

notation used illustrated

We will assume the following framework for the data collecti

modeling, and inference. (This formulation is common totoéshe & = (1,0, 1) and the observed set of end-to-end delays at receivers

other papers in the literature as well.) The delay distrdvutor each
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Figure 2: Two-Layer Tree
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ure 2. Letb = 1, so X, € {0,1}. Suppose that a probe experi-
ences delays of 1, 0 and 1 on links 1, 2, and 3, respectivelgn,Th

1 and 2 would bg/ = ¢(Z) = (1,2). For this tree, the entire set of

link will be assumed to bdiscrete and we will estimate it nonpara- individual link outcomes is given by

metrically. Let the delay accumulated on each linke denoted by
Xk. Then, X, will take values in the s€f0, ¢, 2q, . . ., bg} whereg is

the unit of measurement aiads an integer that defines the maximum

delay for each link. It is assumed throughout that the vatiesand

b are common to all link delay distributions. Also, for the sakf While the set of observable outcomes is given by

simplicity, we will not consider in this paper the possityilthat X
could be infinite, which corresponds to the case where thiespaare
dropped or lost along their path. This extension can be leanetsily
and will be addressed in future work.

We will consider inference under the stochastic assumptian
the individual link delaysX; are mutually independent(This as-
sumption is common in the current literature. Extensionspa-
tial and temporal dependence will be studied in future workgt
ag(7) P{X iqg}, © = 1,...,bandk € V. In the
rest of the paper, for notational convenience, we will driop tise
of the universal measurement umit Further, we will denote by
ar = (ag(1),0x(2),...,ax(b))’, a column vector containing all
of the link £ delay probabilities. Leti = {dx, k € V}, a column
vector containing all the parameters of interest that haveet esti-
mated.

Let Y}, denote the accumulated delay at néde~or example, in
Figure 1,Ys = X; + X5 andYs = X; + X2 + X5. Only the
accumulated (end-to-end) delays at the receiver nodeseoeded;
i.e., we observe only = {V;; j € R}. Note that forj € R,

X ={(0,0,0),(0,0,1),(0,1,0), (0,1,1),(1,0,0), @)
(1,0,1),(1,1,0),(1,1,1)},
y = {(07 0)7 (07 1)7 (17 0)7 (17 1)7 (17 2)7 (27 1)7 (27 2)} (2)

Let the variableX = {X;; k € V} represent the collection of all
individual link delays. The probability of the above outoais given

by

P{X = (1,0,1)} = a1 (1)a2(0)ax3(1), 3)
and the probability of the observed end-to-end delay by
P{Y = (1,2)} = a1 (0)az(1)as(2) + a1 (1)az(0)as(1)  (4)

because there are two sets of link delays that give risedgthrticular
end-to-end delay pair.

Literature Review: There have been several papers recently on the
estimation of link-level parameters based on end-to-ent-leael
measurements. They consider botficastand multicast measure-
ment schemes. Unicast refers to a transmission scheme wieere
root node sends (separate) packets, one at a time, to thigerece
nodes. Unicast schemes suffer from identifiability prolderand
there have been modifications such as back-to-back unfetdtave

Y; € {0, ..., £b} whereL is the number of layers in the tree. Eactbeen proposed [2]. We consider only multicast schemes hEre.

multicast probe packet experiences a delay on each linigaepath.
Let X = {0,1,..

primary focus on past work has been on estimating link-léve$

.,b}/¢! be the space of all possible link delaysrates and delays. Link loss refers to the probability of ging or los-

Hence,Z € X is an|€|-tuple describing the individual link delaysing packets of information due primarily to buffer overfloatsrouter
that the probe experienced. Lg(Z) be the multicast end-to-end nodes along a link. The multicast link loss problem was stidi
measurement that results wh&roccurs. Note that this is a many-Caceres, Duffield, Horowitz, and Towsley [8]. They devisetlever
to-one function; there are sevetébutcomes that result in the samemethod to compute the maximum likelihood estimates (MLEs) u
. Denote byy = {7(Z); & € X'} the space of all possible multicastder the assumption of spatial and temporal independence/evés,

results.

the computation of the variance-covariance matrix andcated in-

Let us consider an example on the two-layer tree shown in Fifgrence is complicated. A computationally simpler apphobhased



on various least-squares methods with superior perforenansmall
samples is considered in Xi, Michailidis, and Nair [14].

In a recent paper, Shih and Hero [9] have considered link/deda
timation based on unicast probing schemes. This paper asstinat
the link delay distributions are a mixture of Gaussian distions
and a point mass at zero. They discuss the identifiabilithlpro as-
sociated with unicast schemes and present a sufficient toaamdior
identifiability. However, checking whether this conditibolds in
real applications remains an open issue.

Lo Presti, Duffield, Horowitz, and Towsley (hereafter reéefto
as LDHT) [6] was the first paper to investigate inference fok-
level delay distributions based on multicast probing sakgnit con-
siders nonparametric estimation for discrete delay tistions un-
der the framework in Section 1.2. Although the estimatiorthoe
in LDHT mirrors the MLE approach for link loss probabilitiés
Caceres et al. [8], it does not lead to MLEs for the delayrithist
tions. We describe it in some detail below since we will be parmg
the efficiency of their method with the maximum likelihoodiestor
(MLE) later in the paper.

We need some additional notation. L&, (i) = P{Y, = i},
the probability that the cumulative delay at nddés equal toi. Let
T (k) = (V(k),E(k)) be the subtree with root node(but connected

the end-to-end delays that are smaller than the maximurrditey.
Information from the end-to-end delays betwéesnd £b — 1 is ig-
nored. Discarding this information leads to consideratédficiency,
which increases as the tree and bin sizes grow larger. Weidutad
efficiency comparison with the MLE in Section Ill. Furtherrapthe
variance-covariance matrix of this estimator is difficdtdompute
except in small trees. This severely limits the ability toelep infer-
ence procedures.

II. MAXIMUM LIKELIHOOD ESTIMATION OF THE
DISCRETELINK DELAY DISTRIBUTION

In this section, we develop the nonparametric MLE of the ylelia-
tribution and describe the expectation-maximization (Elgprithm
[13] for computing the MLE.

Let Ny be the number of probes that resulted in outcgire ).
Let g(7:@) = P{Y = }. Then, the observed data correspond to
a multinomial experiment in terms of the observed end-t-kamk
delays, and the log-likelihood can be expressed as

(@) =Y Nyloglg(7; ).

JyeY

®)

to the root node 0), and |62 (k) be the receiver set of this tree. LetThis likelihood is a complicated function of thes and is difficult to
V(i) = P{minjer)Y; < i}, the probability that the minimum maximize directly. The problem arises from the fact that weesve
end-to-end delay measured in the subée) is less than or equal to only the end-to-end delays. If the unobserved individus tielays

i. Finally, let8y. (i) = P{min;cr)Y; —Y;u) < i}, the probability
that the minimum delay experienced on the subfég) is less than
i. Note the difference betweey, (i) and 8x(:). The former is the
total end-to-end delay starting from node O while the lagténe delay
accumulated only within the subtree starting at nbde

For nodek € R, there is a simple relationship betweg(:) and

Ax(0) = 7(0), ©)
and for: > 0,
i—1
Ar(i) = (i) = Y Ar(). (6)
j=0

For a nodek not in the receiver set, LDHT show that thg, (z) can
be represented as solutions of polynomial equations ofrat(le),
the number of direct descendants kgfinvolving the~x’s and the
Br's. The Bi’s themselves can be expressed in terms ofyfie and
Ay’s. Finally, ay (i) can be expressed in terms 4 (j), A ) (5)
forj =1,...,iandax(j) for j <.

In summary, all of the expressions depend only onthis. The
estimation method in LDHT is based on substituting the foiig
empirical estimators of the;’s

n

> Ve <},

m=1

1

n

A (4) )

whereYy, ,, = minjer ) Ys,m, (theYsm j € R(k) are the end-to-
end delays in subtre® (k) from probem) and solving the polyno-
mial equations ford,’s and then forﬁ’k’s andda’s. The interested
reader should refer to [6] for details. It is worth notingtttias solu-
tion allows for infinite delays and unbalanced tree top@egLDHT
shows that the estimators are consistent and asymptgtitaimal.
Although the solution is non-iterative, itis still cumbenrse to im-
plement. One has to solve complicated polynomialpolynomials
of degreed(k) for every nodek. Additionally, for small numbers of
probes, the appropriate solution to these polynomials nodyeven
be positive. The second problem is the loss of informatiome $o-
lution uses only the empirical quantitiés (i), ¢ = 0,...,(b— 1),

were available, the estimation problem is straightforwartie EM
algorithm is a natural approach for computing the MLEs iis #ind
of missing data problem. It is an iterative algorithm thairtst with
some initial estimate of the desired parameter values. Tiksimg
data (or the sufficient statistics) are imputed using thesienates.
The "complete data” (observed data supplemented with tipeitied
missing data) are then used to obtain new estimates of tlzengar
ter values. The process is repeated until the likelihoodeaes to
a maximum. Each step of the algorithm is guaranteed to igerea
the likelihood, so the solution will converge to a local nraxim or
stationary point [12].

Let Mz be the number of times that a particular individual link
delay set occurred. This is a sufficient statistic of our mgslata. If
we knew these values, the parameter estimation would be siuit-
ple. These are missing however, but we can impute them asvill
Given an estimate o, we impute thel/z from the Ny. With these
imputed values, we can calculate new estimates ofitla@d repeat
the process.

Formally, let theg-th step estimate of the delay distribution of all
the links in the tree topology be denoteddh?’ . Using this estimate,
we can compute®@{X = 7} and P({Y = §(Z)}. With these
values, we can now impute the required quantities irBfstep

PO{X = 7}

P@{Y = ()}
If we let X, ; = {Z € X|z = i}, then theM-stepis
(@+1) 1 (a+1)
a (i) = - Z M. (10)

TEXy,;

Notice that in many cases these calculations simplify,essmme out-
comesy can only arise from a singlg; in such a case the probability
ratio in (9) will just bel. For example, this occurs wheh= 0 in
which caser = 0.

Example: To illustrate the process concretely, consider the follow-
ing example of a two-layer tree with maximum link delay= 2.
Starting from an estimat&?, here are the steps needed to produce



ag"“)(o). First we impute the necessary sufficient statistics in the -

E-step.
M(S?OTOU = NOvO -6.08
M = Noa e
Mé?of;) = No,z ; o
Méf’fol) = Nio Y an
(‘1)(0) (Q)(l) (Q)(l)N 12
Mlath ay Qg @ 1,1
0,1,1 (@) (a) (a) (a) (@) (@)
oy (0)ay” (1ag® (1) + (Day” (0)az" (0) 533
M(q+l) _ agQ) (O)Oég” (1)agQ) (2)N1’2 ey » P % P w 3 140
012 = (@) (a) (a) (@) (@) (@) teaion
a;”(0)ay” (1) ez (2) + (1 ay” (0)az™ (1)
Méf’iol) = Nao Figure 3: Example 1: Convergence of the log-likelihood func
[ agq) (O)chn (2)&;‘1)(1)]\/'271 tion.
021 (@) (a) (a) (a) (a) (a)
o (0)ay” (2)ag™ (1) + ;" (1)ay” (1)a” (0) 0
alath i (0)as” (2)af” (2) Nay o
0,2,2 - 2 (q) (q) . (q) . 045,
Zi:o o’ (Hay” (2 —i)ag” (2 — 1) “ 0
With our sufficient statistics, we can compute the parametiere: "
1 ) ) 035, \\ o o)
(g+1) _ (q+1) d 03
o)==y Mgt (11)
=0 j=0 )
Remark: The above presentation is a formal description of the steps " /

of the EM algorithm. However, in the present setting a mofieieht |
implementation is to cycle through all outcomgse Y and keep a o
running summing of the sufficient statistics for each eleimey(:). AN
Hence, they-th step of the algorithm is summarized next: feron

1. Initialize alla{"™" (i) to zero.

2. For eachy do:

(a) For eachz € {Z|j(Z) = 7}, usea'? to compute
POY =, X =7) = PO(X = 7). Shketch ofdthle proof(:jSlomehFegious but strgightforwar(lj _alget?r? s_hows
= that our delay model, which corresponds to a multinomialegixp
(b) Sum these probabilities to gﬁq)(y =) . ment, satisfies all the conditions posited in Lehmann [1@m@lete
(c) For each X outcome 7, add Ny x PO(X = {etails of the proofs can be found in [4] and [7]. The proposithen
7)/P(Y = ) to all oV (i) such thatzy, = i follows from standard results.
is part of outcomer.

CONSIDERATIONS

Figure 4: Example 1: Convergence of the estimai pf

Repeat this process until convergence.
Since the likelihood functiof(&@) is bounded above, the sequencen this section we provide some numerical results on the@mgnce
1(@?) converges to some valié asq — oc. Since the data arise of the MLE using the EM algorithm and compare the efficiency of

from a curved exponential family (one whose parametersfgatiin-  the heuristic estimator in Lo Presti et al. [6] with the MLE.

ear constraint), the sequence of estimatés converges to a station- We generated data using several scenarios and computed._the M
ary pointa* (see Wu [12]). Although, it cannot be guaranteed thander the true model to assess the convergence properties BM

a” represents the global maximum of the likelihood functioor o gigorithm.

experience with three and four-layer trees suggests thating  Example 1: For the first scenario, we use a three-layer tree with a
the algorithm using several different starting points liguasults in - maximum link delay of 2. The link delay distribution is idées! for

identifying the global maximum. every link in the tree:
Proposition 1 The ML estimator based on end-to-end quantized 4 1 9
multicast measurementssgongly consistent, asymptotically normal ak(0) = 9’ ak(1) 3 ak(2) = 9 (24)

andfully efficient; i.e.
We generated data for = 100, 000 probes and fit our link delay
estimator. Figure 3 shows the log-likelihood at each iterat Fig-
whered) is the true parameter vector, and ures 4, 5, and 6 show the convergence for links on differestrtaof
- - the tree. It can be seen that the estimates converge faidilgand
V(@ — o) = 7, (13) are quite close to their true values (represented by thedidities).
whereZ ~ N{0,17(a)}, with I(&@) denoting the Fisher informa- Additional numerical work reported in [4] indicates thaethuality
tion matrix. of the estimates is largely determined by the sample size.

OMLE — O, a.s, (12)
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Example 2: We generated 100,000 probes from a three-layer tree
with a maximum link delay of 4. Once again, the same link delagf the free parameters (we ignatig (b) for each link since the prob-

distribution was assigned to each link:

1 4

an(0) = 3, an(l) = 3. an(2) = . (15)
a(3) = 135 e (4) = 1—15

Figure 7 shows the log-likelihood at each iteration. Theoetgm
requires a fairly large number of iterations to convergelfiis exam-
ple. We plan to investigate the use of methods in the liteeator

abilities must sum to one) show some differences. Table dsdike
ratios of the variances for the free parameters. For thelifilstthe

two estimates are fairly close although there is some ingrmnt

by using the MLE. For the other two nodes, the difference isemo
pronounced, particularly with regard to the second bin:vméance

for the LDHT estimate is about two and half times larger tHam t
variance for the MLE.

Comparison 2: We followed the same procedure as above using the
following link delay distribution:

speeding up the EM algorithm, including the use of the patansex-
pansion method in Liu, Rubin, and Wu [5]. Figures 8, 9, andtins
the convergence of the link distributions for one link froack level
of the tree. The dotted lines show the true values. The algoriloes
a good job of estimating the true value even with the additiomore
bins to the link delay distribution.

Now we turn to the efficiency comparison of the LDHT estimator

param| LDHT/MLE |

with the MLE using a limited simulation study on two-layeeés a1(0) 1.2739
with maximum delays of 2 and 4. For both trees, all links stiare (1) 1.2805

common delay distribution. .
Comparison 1: We used the following link delay distribution: az(0) 1.5594
as(1) 2.5274

1 1 1

ar(0) = =, arx(l) = =, ax(2) = =. 16 O‘3(0) 1.5724
(0 =5 all) =3 @) =3 (18) as(1) || 2.6125

We generated 100,000 probes and fit both estimators to the ta¢
whole process was repeated 1000 times in order to assessdie a

an(0) = 2, ax(1) = 3, an(2) = , 7)
o(3) = 75, ok(d) = . (18)

racy and precision of the two estimators. The mean of thenettis 1able 1. Variance ratios for the two estimators in the thiiee b

for both estimators was very close to the true value. Theawags Problem.
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Again, the accuracy of both estimators is quite good, butesesim-
ilar differences in the variances. See Table 2 for the vagaatios
for @1 andd, (the behavior fos is very similar tods). As before,
there is slight improvement in the variance of the estiméiedink
one and more pronounced differences for the other linksh Wibre

bins, we can see an even greater improvement in the perfeeman

of the MLE as its variance is about a fourth of the variancetlier
LDHT estimate. We expect that these differences will be evere
pronounced on larger trees with more delay bins.

IV. CONCLUSIONS

We have developed the nonparametric maximum likelihooiinest
tor for the discrete link delay distributions based on nzakst probing

param| LDHT/MLE |

a1(0) 1.7765
a1(1) 1.6989
a1(2) 1.2649
a1(3) 1.3059
a2(0) 2.2407
aa(1) 2.8871
a2(2) 2.9190
as(3) 43679

schemes. The EM algorithm can be used to compute the estimato
We have shown that this estimator is consistent and asyitailgt
normal. It compares favorably with a previous estimatortadtas
smaller variance and avoids certain problems inherent @b ehti-
mator. A very limited simulation study is used to compare tithe
methods and demonstrate the improvement in efficiency.

There are several directions that will be pursued as pantofé
work. The discrete delay problem addressed here is an appaox
tion to reality, and we plan to study nonparametric estiamatf un-
derlying continuous delay distributions with point pas$) &nd co
(corresponding to lost packets). Additionally, parantegstimation
would also be useful and would simplify the continuous dgresti-
mation problem. Extensions to more general tree topologikalso
be considered. In a designed test, a binary and symmeteicareal-
ways be arranged, but this may leave out certain links. THityatio
study networks having more general topologies is desirdtielly,
we will explore inference under various temporal and spatzdels.
This would be quite useful for identifying and localizingcemalous
behavior in networks.
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